Chapter 5

Introduction to Reactions in Aqueous Solutions

Aqueous Solutions

- Solvent liquid water
- Solute substance being dissolved

• Electrolyte

substance that, when dissolved in a polar solvent like water, produces a solution that can conduct electricity (because it produces ions, which are charged)

Electrolytes

Strong electrolyte:

- When dissolved in water, dissociates almost completely into ions
-) and the set of \mathcal{L} and \mathcal{L}
-
- Strong bases (e.g. KOH)

In this course, we will assume that all ionic compounds dissolve as separated cations and anions

) and the set of \mathcal{L} and \mathcal{L}

Weak electrolyte:

- When dissolved in water, only some of it produces ions
-
-) and the contract of \mathcal{L}

Non-electrolyte:

Does not dissociate into ions at all (e.g. sugars, alcohols, oils)

Be aware:

The terms "strong electrolyte" or "weak electrolyte" refers to the **substance** dissolved (i.e. solute)

• A concentrated solution of a strong electrolyte is a good conductor and can make the bulb glow bright.

But …

-
- \triangleright Even if the dissolved "strong electrolyte" fully dissociated, if there isn't much of it, it will still have low conductivity

On the other hand,

© Arno Papazyan

Even a concentrated solution of a weak electrolyte is not a good conductor and will not make the bulb glow bright.

A molecular substance like hydrogen chloride (HCl), A molecular substance like hydrogen chloride (HCl),
which is <u>not</u> ionic, but fully dissociates into ions when
dissolved in water, is <u>also</u> a strong electrolyte.
Pecause it's a strong acid, fully dissociating into
 $H^*(aq)$ A molecular substance like hydrogen chloride (HCl),

which is <u>not</u> ionic, but fully dissociates into ions when
 \geq Because it's a strong acid, fully dissociating into
 \geq Because it's a strong acid, fully dissociat decular substance like hydrogen chloride (HCl),

is <u>not</u> ionic, but fully dissociates into ions when

ved in water, is <u>also</u> a strong electrolyte.

Because it's a strong acid, fully dissociating into
 $Acids product$ produce H⁺ decular substance like hydrogen chloride (HCl),

is <u>not</u> ionic, but fully dissociates into ions when

the axelectrolytes (because they are

because they are distanced in water, along acid, fully dissociating into

Paragy A molecular subsacre were interesting to the till of base were the same that and the base were the same that and the same of the same tect of the same of the same tect of the same of the same of the same of the same of t 9/29/2021

A molecular substance like hydrogen chloride (HCl),

which is <u>ont</u> ionic, but fully dissociates into ions when

dissociates into ions when

discolved in water, is <u>also a</u> arong add, fully dissociates into ion

 \triangleright Because it's a strong acid, fully dissociating into $H^+(aq)$ and $Cl^-(aq)$ ions $\qquad \qquad$

Note: Acids produce H+ ions in water, along with an anion

Strong acids are strong electrolytes

Weak acids are weak electrolytes

Almost all the bases we see in this course are metal hydroxides like NaOH or KOH, and are strong electrolytes (because they are ionic compounds).

 \triangleright Remember: we will assume that all ionic compounds fully dissociate into their ions when dissolved

Note: Bases produce OH⁻ ions in water, along with a cation $NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$

One weak base we encounter is ammonia: $NH₃$

- usual metal hydroxide like NaOH)
	-
	-
- Pecause it's a strong acid, fully dissociating into

H'(aq) and Cl'(aq) ions

electrolytes

electrolytes
 $\frac{1}{2}$ acids produce H' ions in water, olong with an anion

mg acids are strong electrolytes
 $-$ nolly partially A strong aids are strong electrolytes

H'(ag) and C'Fag) lons

Note: Acids produce H' ions in water, olong with an anion

Strong aids are strong electrolytes

-- inly joinize in water

-- only partially ionize in water
 to form NH_4^+ and OH^- produced by reacting with water -- Tuny ionize in water

-- nolly partially ionize in water

-- only partially ionize in water

-- only partially ionize in water

-- so it is a weak base we encounter is ammonia: NH₃

-- so it is a weak electrolyte

--
- Not fully converted to ions
	-

Types of Chemical Reactions we will look at:

- Precipitation
- Acid–Base
- Double-displacement reactions Double-replacement
Exchange
Methathesis
DONS
CArno Papagan Exchange Methathesis Also called:
Double-replacement
- Oxidation–Reduction A wide variety of reactions

© Arno Papazyan

Precipitation Reactions One weak base we encounter is ammonia: NH₃

Vanied Reactions we will look at:

usual metal hydroxicle like NaOH)

was allect NaOH)

- no guarantee it will fully onize

- no guarantee it will fully onize

- no guarantee i and separates from the solution. Precipitate (verb): to drop out of solution Precipitate (noun): the solid that forms We will consider precipitation of ionic compounds © Arno Papazyan Remember: When ionic compounds dissolve in water, the resulting solution contains the separated ions. If ions from two soluble ionic compounds cation from one, *anion* from the other correspond to an *insoluble* compound they combine and **precipitate** if they are in the same solution \triangleright it doesn't matter if there are soluble combinations \triangleright insoluble combination wins \triangleright Because these ions are "happier" together in solid form \triangleright That's why that combination is insoluble Franchischer Medicine Reduction Stress

The weak base we encounter is ammonia: NH₃

Une weak base we encounter is ammonia: NH₃

Une weak base we encounter is ammonia: NH₃

Une of Chemical Reactions we will look at:
 9

Precipitation Reactions

A <u>double displacement</u> reaction in which a <u>solid</u> forms

and speare the metalling solution contains the separated lons.

Precipitate (*verb*): to drop out of solution

Precipitate (*verb*): t

Precipitation Reactions

- Sulfide ion, S^{2-} , is generally insoluble (except, as always, with alkali metals and ammonium)
- Sulfides of Group 2 metals (alkaline earth) are soluble.

But:

- Sulfide ion in water is unstable in the long term.
- It slowly reacts with water to produce H_2S gas.

Because its solutions are unstable, I don't include sulfide in the "normal" rules of solubility.

- Molecular equation
- Complete ionic equation
- Net ionic equation

© Arno Papazyan

 $Co^{2+}(aq) + 2OH^{-}(aq) \rightarrow Co(OH)_{2}(s)$ (s)

Acids & bases as defined by Arrhenius

- Oldest acid-base concept
- Applies in aqueous solutions
- Acids provide H+ in aqueous solution
- Bases provide OH‒ in aqueous solution
- When an acid and a base "neutralize" each other \triangleright H⁺ and OH⁻ combine to form H₂O
	- \triangleright Remaining parts of the acid and the base form a "salt"

© Arno Papazyan

Acids & Bases as defined by Arrhenius

- In the formula of an Arrhenius acid, the acidic hydrogen is written first.
- Any other hydrogens later in the formula are not acidic. $HC₂H₃O₂$

acidic not acidic

- An acid with one acidic hydrogen is "monoprotic" $HNO₃$
- An acid with two acidic hydrogens is "diprotic" H_2SO_4 SO_4
- An acid with three acidic hydrogens is "triprotic" H_3PO_4

© Arno Papazyan

easily.

Acids & Bases as defined by Arrhenius

"Weak Acids" we need to know:

- Any acid not listed among the "strong"
	- fully
- Organic acids such as acetic acid $(HC_2H_3O_2)$)
- HF(aq)
- $H_3PO₄$
- The anion produced after diprotic or triprotic acids, even if they are strong in releasing their first acidic H $\text{HSO}_4^-(aq) \to \text{H}^+(aq) + \text{SO}_4^{2-}(aq)$ Lea anion of the acid and molecules dissociate into

anion of the acid $(\alpha q) \rightarrow H^+(aq) + Br^-(aq)$ dissociate into loss

anion of the acid $(\alpha q) \rightarrow H^+(aq) + Br^-(aq)$ dissociate into loss

anisotic acid and molecules

anisotic ac Incomplete dissociation

 \triangleright makes H₃O⁺ unavailable to function as free H⁺(aq)

• Actually when there isn't much water around, HF is a stronger acid than our usual "strong" acids like H_2 SO $_4$,
HCl, etc. SO_{4} , $\qquad \qquad$

Nevertheless:

In the world of General Chemistry where aqueous (and not very concentrated) solutions rule, we will regard HF as a "weak acid"

- H⁺ cation diffuses drastically faster than the undissociated acid **However:** molecule, and will generally reach the OH‒ first
- Acid/Base as defined by Arrhenius —acid-base reactions

 H⁺ cation diffuses defined by Arrhenius —acid-base reactions

 H⁺ cation diffuses defined by factor than the undissociated acid

 H⁺ reacts much more readi • H+ reacts much more readily than the undissociated acid molecule because H⁺ is the strongest possible acid in aqueous solution (the subsection belocated weaker the acid, the more drastic this difference becomes) $\|\cdot\|$ I will not ask you to write weak acid/base ionic equations

Undissociated acid concentration being higher than the H+ concentration is unlikely to justify the traditional way the ionic equations are written.

A similar argument can be made for most weak bases as well.

 $9/29/2021$
Acid/Base as defined by Arrhenius $-$ acid-base reactions
However:
In future courses, you might be expected to "know" to write the
ionic equations for weak acid and bases in the "traditional" way. In future courses, you might be expected to "know" to write the ionic equations for weak acid and bases in the "traditional" way. 9/29/2021
• Add/Base as defined by Arthenlus – add-base reactions
• However:
• In future courses, you might be expected to "know" to write the
• I will not ask you to write weak acid/base ionic equations
• But i<u>t would be</u> $\frac{\text{Add/Base as defined by Arrhenius - add base reactions}}{\text{Add/Base as defined by Arrhenius - add base reactions}}$
 However:

In future courses, you might be expected to "know" to write the

ionic equations for weak acid and bases in the "traditional" way.

• I will not ask you to write weak

-
-

© Arno Papazyan

- "oxidized" it was • Oxygen was thought of as "oxide" in its compounds
- (with its -2 charge)
- So, the more oxygens bonded to an atom, the more positive it was
	-
- Oxidation was then generalized to mean an increase in "charge" (and not necessarily bonding to oxygen)
- And charge itself was generalized to the more abstract "oxidation state" (which is often not an actual charge)

Redox Reactions

- They are like charges, but not exactly
- Oxidation numbers are the charges that would exist if the atoms always formed ionic bonds, with the electron ending up on the atom that likes them more. e.

The more oxygens bonded to an atom, the more

thicke it was

the have a neutral compound

dation was then generalized to mean an increase in

arge" (and not necessarily bonding to oxygen)

delarge itself was generalize the mote or when generalized to mean an increase in
the it was
dation was then generalized to mean an increase in
arge" (and not necessarily bonding to oxygen)
d charge itself was generalized to the more abstract
idation s -- To have a neutral compound

-- Oxidation was then generalized to mean an increase in

"charge" (and not necessarily bonding to oxygen)

-- And charge itself was generalized to the more abstract

"oxidation state" (which
- Oxidation numbers are often not actual charges
	-
- Even when they are not actual charges, the net change in oxidation states does determine the net number of © Arno Papazyan

Oxidation and reduction are coupled

 \triangleright If something is oxidized, it must be reducing Solution and reduction are coupled

Solution and reduction are coupled

idized substance: reducing agent

If something is **oxidized**, it must be reducing

something else

 \triangleright If something is reduced, it must be oxidizing something else

And remember:

- "oxidizing agent" and "reducing agent" are always on the reactant side!
- They cannot be products!

An oxidizing agent (oxidant)

- \triangleright causes another substance to be oxidized
- \triangleright contains an element whose oxidation state *decreases* in a redox reaction
- \triangleright gains electrons (electrons are found on the left side of its half-equation)
- \triangleright is reduced
-

A reducing agent (reductant)

- \triangleright causes another substance to be reduced
- \triangleright contains an element whose oxidation state *increases* in a redox reaction
- \triangleright loses electrons (electrons are found on the right side of its half-equation)
- \triangleright is oxidized

substance such as O2 (g), Cu(s), etc., anywhere in the reaction

Oxidation state is zero for an elemental substance

states.

If the elemental substance like O₂(g), H₂(g), S₈(s), Fe(s) The redction. appears on either side of a reaction, it must occur in a compound on the other side of the reaction.

$$
C(s) + O_{2}(g) \rightarrow CO_{2}(g)
$$
\n
$$
F_{2}(s) + CuSO_{4}(aq) \rightarrow F_{2}(g)
$$
\n
$$
C_{2}(g) \rightarrow CO_{2}(g)
$$
\n
$$
C_{2}(g) \rightarrow CO_{2}(g)
$$
\n
$$
C_{2}(g) \rightarrow CO_{2}(g)
$$
\n
$$
C_{6}H_{12}O_{6}(s) \rightarrow C(s) + H_{2}O(g)
$$
\n
$$
C_{6}H_{12}O_{6}(s) \rightarrow C(s) + H_{2}O(g)
$$

There are exceptions to:

substance such as O₂(g), Cu(s), etc., anywhere in the \vert reaction"

Exception:

When the element is in an "elemental state" on both sides of the reaction. For example, there is no redox here: $O_2(g) + O(g) \rightarrow O_3(g)$

Exception:

(g) \rightarrow $CO_2(g)$ \rightarrow $CO_2(g)$ When the element happens to have an average of zero redox here:

 $C_6H_{12}O_6(s) \rightarrow C(s) + H_2O(g)$

Redox Reactions

© Arno Papazyan

Redox Reactions **Reactions**

Balancing Oxidation-Reduction Equations

We can't count on "balancing by inspection" or even the more general procedure we learned earlier.

We need to use a method specialized to redox reactions.

Especially because we will be expected to bring in H⁺, OH⁻, and H₂O \vert into the reaction equation even if they are not initially in the given
 $2 \text{ MnO}_4^- + H_2O_2 + 6 \text{ H}^+ \longrightarrow 2 \text{ Mn}^{2+} + 3 \text{ O}_2 + 4 \text{ H}_2\text{O}$ equation, as we will normally consider redox reactions in aqueous
 $\frac{2 \text{ NnO}_4 + 3 \text{ H}_2\text{O}_2 + 6 \text{ H}^+ \longrightarrow 2 \text{ Nn}^2 + 4 \text{ O}_2 + 6 \text{ H}_2\text{O} \times \text{Nn}}{2 \text{ MnO}_4 - 3 \text{ H}_2\text{O}_2 + 6 \text{ H}^+ \longrightarrow 2 \text{ Nn}^2 + 4 \text{ O}_2 + 6 \text{ H}_2\text{O} \times \$ solution. We can't count on "balancing by inspection" or even the more

we need to use a method specialized to redox reactions.

We need to use a method specialized to redox reactions of the following equals

that the reaction equa Expecial procedure we learned artifer.

Reneal procedure we learned artifer.

We need to use a method specialized to redox reactions.

The overall procedure we learned special experiment interval on the other interval of We need to use a method specialized to redox reactions.

Sizpecially because we will be expected to bring in H , OH; and H₂O

entation, as we will normally consider redox reactions in aqueous

colution.

 Fraction equation even if they are not initially in the given

solution.

Solution.

Solution.

Solution.

Solution.

A General Procedure for Balancing Redox Reactions

A General Procedure for Balancing Redox Reactions

S 69

Balancing Oxidation-Reduction Equations

We can't count on "balancing Oxidation-Reduction Equations

general procedure we learned grafies.

general procedure we learned grafies

expected to be the smooth of the follow

A General Procedure for Balancing Redox Reactions Using the Half-Reaction Method

-
-
- each element. Fig. (2 MnO₄ + 3 Hz)
 $\frac{2 \text{ MnO}_4 - 15 \text{ H}_2}{2 \text{ MnO}_4 + 7 \text{ H}_2}$
 $\frac{2 \text{ MnO}_4 + 7 \text{ H}_2}{2 \text{ MnO}_4 + 7 \text{ H}_2}$
 $\frac{2 \text{ MnO}_4 + 7 \text{ H}_2}{2 \text{ MnO}_4 + 7 \text{ H}_2}$
 $\frac{2 \text{ MnO}_4 + 7 \text{ H}_2}{2 \text{ MnO}_4 + 7 \text{ H}_2}$
 $\frac{2 \text{ MnO}_4 + 7$ $\begin{tabular}{|c|c|} \hline & 2 \, \mathrm{MnO_4}^- + 7\, \mathrm{H}_2 \\\hline \end{tabular}$ $\begin{tabular}{|c|c|} \hline & 2 \, \mathrm{MnO_4}^- + 7\, \mathrm{H}_2 \\\hline \end{tabular} \\\hline \hline \end{tabular} \begin{tabular}{|c|c|} \hline & 2 \, \mathrm{MnO_4}^- + 7\, \mathrm{H}_2 \\\hline \end{tabular} \\\hline \begin{tabular}{|c|c|} \hline \multicolumn{1}{|c|}{\textbf{A}} \\\hline \end{tabular} \\\hline \$ 3. Meantal Procedure for Balancing Redox Reactions

3. Separate the overall reaction into two half-reactions.

2. Separate the overall reaction into two half-reactions.

2. Separate the overall reaction with respect to n
- electrons.
- reactions equal by multiplying.
-
-

Oxidation

Recap:

Reduction

reaction.

reaction.

electrons lost and gained.

O.S. of some element increases in the

O.S. of some element decreases in the

Balancing Oxidation-Reduction Equations

The following equations are all balanced in terms of atoms and charges, but only one is balanced in terms of the number of

• Assign oxidation numbers to all atoms to determine what is being oxidized and what is being reduced.

• Divide the reaction into two half-reactions, one for oxidation and one for reduction.

 \mathbf{x} and \mathbf{x} \mathbf{x}

 \mathbf{x} and \mathbf{x}

 $\sqrt{2}$

Balancing Redox Equations

- In this case, the half-reactions are already balanced with respect to mass—the number of each type of atom on both sides of each half-reaction is the same.
- However, the equations are not balanced with respect to charge.
- We balance the charge of each half-reaction individually by adding the appropriate number of electrons to make the charges on both sides equal.

$$
Al(s) \longrightarrow Al^{3+}(aq) + 3e^-
$$
 (ze:

$$
1e^- + Ag^+(aq) \longrightarrow Ag(s)
$$
 (ze)

Balancing Redox Equations

- Since these half-reactions must occur together, the number of electrons lost in the oxidation halfreaction must equal the number gained in the reduction half-reaction. 94/29/2021

Balancing Redox Equations
 Example 2018

In this case, the half-reaction and effect and the same of each type of atom on

respect to mass—the number of each type of atom on

both sides (each half-reaction is
	- We equalize these by multiplying one or both halfreactions by appropriate whole numbers to equalize the electrons lost and gained.

$$
\text{Al}(s) \longrightarrow \text{Al}^{3+}(aq) + 3\text{e}^{-}
$$
\n
$$
3 \times [1\text{e}^{-} + \text{Ag}^{+}(aq) \longrightarrow \text{Ag}(s)]
$$

alchemy where the initial equation might be missing an element or **Fig. 1.1 The "bare-bones"** (i.e. skeletal) reactions are usually given in "net two (or more) on one side of the equation or the other!

You might feel like you are doing things we are not supposed to do in balancing, such as adding new reactants or products to the equation. That's because aqueous-solution redox reactions are often given in "bare-bones" form. The state of the matter of the matter of the state of the state

- equation while balancing it.
- are not involved in redox and then add them later. We just need to get used to it.

• Verify that the equation is balanced, with respect to both mass and charge.

The "bare-bones" (i.e. skeletal) reactions are usually given in "net -- "ionic" or "net ionic" equations

• Notice that the charge need not be zero on both sides of the equation-it just has to be equal on both sides. The equation is balanced.

Balancing Redox Reactions in Aqueous Solutions
Palancing Redox Reactions in Aqueous Solutions
Palancing Redox Reactions in Aqueous Solutions Balancing Redox Reactions in Aqueous Solutions

ionic" form

Some authors seem to use the term "ionic equation" to mean "net ionic equation"; so beware!

"ionic equation" and "net ionic equation" are analogous to those for double-displacement (metathesis) reactions:

- \triangleright lonic equation: include the "counter-ions" that would allow you to combine ions into neutral chemical formulas
- ▶ Net-ionic equation: do not include spectator ions (those "counter-ions" of ions that are actually involved in redox

Balancing Redox Reactions in Acidic Conditions

- Write both half reactions (oxidation & reduction)
- Balance all atoms other than O and H
-
- Balance H by adding H+
- Balance charge by adding e‒
- Multiply both half reactions by a factor to equate no of e⁻ and *alf-reaction*, one for oxidation and one
- Add the two half-reactions and cancel out the e^{-t} s and any $\begin{array}{c|c}\n\hline\n\end{array}$ for reductions, the set of solution substances appearing on both side
and the state of th
- Double check: All elements balanced and the collection of the following order

Any reaction that can occur in solution can be the subject of solution stoichiometry, such as: 1998 and the state counter and contained production of the method of the state of the state

Acid-base neutralization reactions

Redox reactions

Precipitation reactions

Solving Stoichiometry Problems for Reactions in Solution

- 1. Identify the species present in the combined solution, and determine what reaction occurs.
- 2. Write the balanced equation (net ionic or "molecular", depending on which seems more convenient) for the reaction.
- 3. Calculate the moles of reactants.
- 4. Determine which reactant is limiting.
- 5. Calculate the moles of product(s), as required.
- 6. Convert to grams or other units, as required.

Not really different from general stoichiometry questions!

We just use volumes and concentrations to find moles (or vice versa) © Arno Papazyan To do anything useful, we must know:

- The nature of the reaction.
- The amounts of chemicals present in the solutions.
• In a titration there is no limiting reactant, by definition
- \triangleright And to know the amount of a chemical present in solution, we need to know the volume of the solution and its concentration 91/29/2021

To do anything useful, we must know.

• The nature of the reaction.

• The mounts of chemical present in the solutions.

• Mean out of of the we do "throthoms"

• Mean out of the weaker from the reaction speci

Performing Calculations for Acid–Base Reactions

- No different from other reactions, really.
-
-
- 9/29/2021

 Often we do "titrations"

 No different from other reactions, really.

 Often we do "titrations"

 In a titration there is no limiting reactant, by definition

 Balancing is easy because **H⁺ and OH⁻ m** Balancing is easy because H⁺ and OH⁻ must come in $9/29/2021$
id—Base Reactions
tions, really.
ing reactant, by definition
and OH $^-$ must come in
iometry without writing
e able to equal moles
	- \triangleright we can even do the stoichiometry without writing the reaction
- \triangleright but don't feel you must be able to

91 © Arno Papazyan

Acid–Base Titrations

Titration: delivery of a measured volume of a solution of known concentration (the titrant) into a solution containing the substance being analyzed (the analyte).

Equivalence point: exactly enough titrant added to react completely with the analyte.

 \triangleright The ideal we try to achieve at the end of titration

Endpoint: the indicator changes color so you can tell the equivalence point has been reached. It's an experimental approximation of the equivalence point. $\frac{d}{dt}$ -Base Titrations
 $\frac{d}{dt}$ -Base Titrations
 a -Base Tit

approximation of the equivalence point.

Mosculph Mexical Mex

There is no limiting or excess reactant in titrations

Practice

We must know:

action.

actions external the solutions of the solutions of the solutions of the solutions of a chemical present in

the solutions of the For the titration of sulfuric acid (H_2SO_4) with sodium hydroxide (NaOH), how many mL of 0.1054 M sodium hydroxide would be required to react with 1.00 L of 0.500 M sulfuric acid to reach the endpoint? n a titration there is no limiting reactant, by definition

Salancing is easy because **H^{*} and OH⁻ must come in**

squal moles
 \triangleright we can even do the stoichiometry without writing

the reaction
 \triangleright but don't fee s no limiting reactant, by definition
cause **H^{*} and OH⁻ must come in**
the stoichiometry without writing
u must be able to
u must be able to
straighter and the stoichion in Solution - Add base reactions
lifturic acid (Balancing is easy because **H^{*}** and OH⁻ must come in

equal moles
 \triangleright we can even do the stoichiometry without writing

the reaction
 \triangleright but don't feel you must be able to
 $\frac{1}{\sqrt{2}}$

active
 $\frac{1}{\sqrt{2}}$

a The must come in

the able to

characteristic with the settions in Solutions – Acid-base reactions

ions with Reactions in Solutions – Acid-base reactions

cid (H₂SO₄) with Sodium

y mL of 0.1054 *M* sodium

d to reac H⁺ and OH⁻ must come in

chiometry without writing

be able to

sometring

ions with Reactions in Solutions – Acid-base reactions

cid (H₂SO₄) with sodium

y mL of 0.1054 *M* sodium

to react with 1.00 L of 0.500
 Figure 1.100 moltons - Acid-base reactions

1.00 moltons - Acid-base reactions

1.00 moltons - Acid-base reactions

1.00 moltons - Acid-base reactions

2.00 moltons - Acid-base reactions

2.00 moltons - Acid-base reaction n = NaOH ^cNaOH NaOH ^V > we can even do the stoichiometry without writing

the reaction

> but don't feel you must be able to

Tractice

Cacutations with Readions in Solutions - Add-base readions

or the titration of sulfuric acid (H For Acid-Base Reactions

S"

S"

colimiting reactant, by definition

use H^{*} and OH⁻ must come in

stoichiometry without writing

must be able to

straighter and the solutions in Solutions - Acid-base reactions

ric ac

 $H_2SO_4(aq) + 2 \text{ NaOH}(aq) \rightarrow \text{Na}_2SO_4(aq) + 2 \text{ H}_2\text{O}(aq)$
 $H_{H_2SO_4} = C_{H_2SO_4} V_{H_2SO_4} = (0.500)(1.00) = 0.500 \text{ mol H}_2SO_4$ $SO_4(aq)$ + 2 NaOH (aq) \rightarrow Na₂SO₄ (aq) + 2 H₂O (aq)

 SO_4

 $SO_4 \frac{2 \text{ mol} \text{ NaO}}{1 \text{ mol H}_2 \text{SO}_4}$ = 1.00 mol NaOH

$$
\implies V_{\text{NaOH}} = 9.49 L = 9.49 \times 10^3 mL
$$

Copyright Copyright Copyright Copyright Copyright Copyrights reserved 92 Arno Papazyan

© Arno Papazyan

Acid-base neutralization and redox reactions are often used in titrations where, by design, there is no limiting or excess reactant. Acid-base neutralization and redox reactions are often used in

titrations where, by design, there is no limiting or excess

reactant.

Titration with a redox reaction (or any reaction) is in principle

similar to that wi

Titration with a redox reaction (or any reaction) is in principle similar to that with acid-base reaction.

With precipitation reactions, we often have a limiting reactant

We don't often see precipitation reactions in the context of titration.

Practice $(PO_4)_2$ 811.54 g $Pb_3 (PO_4)_2$ 44 F P (PO_3) reactions, we often have a limiting reactant

ESS reactant(s),

precipitation reactions in the context of

lead (II) nitrate: Pb(NO₃) (an) essis as
 Calcular (or "formula") equation:

Phase (and a Pb₃(be) + 3 Pb_NO Example 2011

Simulations with access to the context of

Simulations with access in the context of

Simulations with access in the context of

Simulations with access in the context of the simulation of the simulation

Si $\frac{2}{2}$ $\frac{2}{2}$ and Pb₃(PO₄)₂ = 1.1 g Pb₃(PO₄)₂ $2)Na_3PO_4(aq) + (3)Pb(NO_3)_2(aq) \rightarrow Pb_3(PO_4)_2(s) + 6 NaNO_3(aq)$ (aq) $\begin{array}{ccc} (0.30)(10.0x10^{-3}) & (0.20)(20.0x10^{-3}) & \text{precipitate} \\ c & V & C & V \\ 3.0x10^{-3} \text{ mol} & 4.0x10^{-3} \text{ mol} & n = c \cdot V \end{array}$ $3.0x10^{-3}$ mol $4.0x10^{-3}$ mol $10x10^{-3}$ mol $\begin{array}{ccc} (0.20)(20.0x10^{-3}) & \text{P} \end{array}$ calculate number of moles from: \div (2) $\left|\div$ (3) $\right|$ $\overline{0}$ in the limiting reactant: $\left[\frac{1}{1.5 \times 10^{-3}}\right] \rightarrow \left[\frac{1}{1.3 \times 10^{-3}}\right]$ $\left[\frac{1}{1.5 \times 10^{-3}}\right]$ $\left[\frac{$ Smaller; limiting 4.0×10^{-3} mol Pb(NO₃)₂ x $\frac{2.0001 \text{ Pa/s}}{2.0001 \text{ Pa/s}}$ x $\frac{2.1001 \text{ Pa/s}}{2.0001 \text{ Pa/s}}$ = 1.1 g Pb₃(F Example 2011 and the context of

Leading Contents in the context of

The contents of the context of the content of the content of the content

2 NajPO₄(se) + 3 Pb(NO₃₎₄(se) - Pb₍NO₃₎

(Situations with figure of \mathcal{O}_2 gives the contract of \mathcal{O}_2 and \mathcal{O}_3 and \mathcal{O}_4 and \mathcal{O}_5 and \mathcal{O}_7 and \mathcal{O}_8 and \mathcal{O}_9 and $\mathcal{O}_$ precipitation reactions in the context of
 $\frac{1}{2}N\sin^2\theta_4 \cos^2\theta_1 + 3P\theta_1N\theta_2\sin\theta_3$
 $\frac{1}{2}N\sin^2\theta_4 \cos^2\theta_1 + 3P\theta_1N\theta_2\sin\theta_2$

(Societion and headson is societies - Freepintinia reactions

(Societion) (assume vo $(PO₄)₂$ Si Arno Papazyan о се се применен на селото во селото в селото Рарахуал се се применен на селото во селото на селото на селото н
Постојата се применен на селото на село 1 mol Pb3 \mathbf{Q}_2 To find the limiting reactant: their coefficients in the equation in the contract of the $n = c \cdot V$ 10.0 mL of a 0.30 M sodium phosphate solution reacts with 20.0 mL of a 0.20 M lead(II) nitrate solution (assume volumes add up perfectly). What mass of precipitate will form?

99

Practice

10.0 mL of a 0.30 M sodium phosphate solution reacts with 20.0 mL of a 0.20 M lead(II) nitrate solution (assume volumes add up perfectly). Will there be a reaction? If so, what is the product?

sodium phosphate: Na₃PO₄ (aq) exists as 3 Na⁺ (aq) + $\left($ PO₄³⁻ (aq) $\binom{4^{3-1}(aq)}{q}$ (a) and \overline{a} and $\overline{$ $3^-(aq)$ With two solutions of ionic compounds, typically we think of a double-displacement reaction of the "precipitation" kind. Will there be a precipitate? If not, the ions would still be floating around just as before the two solutions were mixed, and there would be no reaction. and redox reactions are often used in
 $\frac{1}{2}$, there is no limiting or excess

a 0.20 M isodium phosphate solution reacts with 20.0 m. of

will there be a reaction? If so, what is the product?

will there be a reaction 97 29 2021

Addibiase neutraliation and redox reactions are often used in

titrations where by design, there is no limiting or excess

traction.

With these these constraints are constrained in the constraints of the cons

insoluble togethe

lead (II) nitrate: Pb(NO₃)₂ (aq) exists as $(Pb^{2+}(aq)) + 2 NO_3(qq)$ ‒ (aq)

"Molecular" (or "formula") equation:

2 Na₃PO₄ (aq) + 3 Pb(NO₃)₂ (aq) \rightarrow **Pb₃(PO₄)₂ (s)** + 6 NaNO₃ (aq) (aq) precipita