Chapter 8 Quantities in Chemical Reactions

Nivado J. Tro

Nivado J. Tro

Nivaldo J. Tro

Space Space Equations
Southwedtern Oklahoma State University

Night Entropy Chemical District Containers

Niversity

Niversity

Based on slides provided with Introductory Chemistry, Fifth Edition

By Dr. Sylvia Esjornson Southwestern Oklahoma State University Weatherford, OK

With some modifications and additions by Based on slides provided with Introductory Chemistry, Fifth Edition
Nivaldo J. Tro
By Dr. Sylvia Esjornson
Southwestern Oklahoma State University
Weatherford, OK
With some modifications and additions by
Dr. Deniz Cizmeciya and Dr. Arno Papazyan

Global Warming: Too Much Carbon Dioxide

- The combustion of fossil fuels such as octane (shown here) produces water and carbon dioxide as products.
- Carbon dioxide is a greenhouse gas that is believed to be responsible for global warming.

The Greenhouse Effect

- Greenhouse gases act like glass in a greenhouse, allowing visible-light energy to enter the atmosphere but $_{\text{Heat}}$ preventing heat energy from escaping.
- Outgoing heat is trapped by greenhouse gases such as $CO₂$.

Combustion of Fossil Fuels Produces CO₂

- Consider the combustion of octane (C_8H_{18}) , a component of gasoline: bustion of Fossil Fuels Produces CO₂
Discreption of octane (component of gasoline:
2 C₈H₁₈(1) + 25 O₂(g) -> 16 CO₂(g) + 1 $2 C_8H_{18}(l) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(g)$ $\begin{aligned} \mathsf{tane}\ (\mathsf{C_8H_{18}}),\ (g) &+18\ \mathsf{H_2O}(g) \end{aligned}$ Consider the combustion of o
a component of gasoline:
2 C₈H₁₈(*l*) + 25 O₂(*g*) \rightarrow 16 CO
The balanced chemical equati
mol of CO₂ are produced for e
octane burned.
- The balanced chemical equation shows that 16 e combustion of octane (C₈H₁₈),
nt of gasoline:
+ 25 O₂(g) - 16 CO₂(g) + 18 H₂O(g)
ed chemical equation shows that 16
are produced for every 2 mol of
ned. octane burned.

Combustion of Fossil Fuels Produces CO₂

- Since we know the world's annual fossil fuel consumption, we can estimate the world's annual $CO₂$ production using the balanced chemical equation.
- Calculation shows that the world's annual $CO₂$ production—from fossil fuel combustion—matches the measured annual atmospheric CO₂ increase, implying that fossil fuel combustion is indeed responsible for increased atmospheric CO_2 levels.

Stoichiometry: Relationships between Ingredients

- The numerical relationship between chemical quantities in a balanced chemical equation is called reaction stoichiometry.
- Stoichiometry: Relationships between Ingredients
• The numerical relationship between chemical
quantities in a balanced chemical equation is called
reaction **stoichiometry**.
• We can predict the amounts of <u>products</u> that
 form in a chemical reaction based on the amounts of reactants. • The numerical relationship between chemical
quantities in a balanced chemical equation is called
reaction **stoichiometry**.
• We can predict the amounts of <u>products</u> that
form in a chemical reaction based on the amounts • We can predict the amounts of <u>products</u> that
form in a chemical reaction based on the amounts of
<u>reactants</u>.
• We can predict how much of the <u>reactants</u> are
necessary to form a given amount of <u>product</u>.
• We can pred
- necessary to form a given amount of product.
- to completely react with another reactant.

Making Pancakes: Relationships between Ingredients

• A recipe gives numerical relationships between the ingredients and the number of pancakes.

1 cup flour + 2 eggs + $\frac{1}{2}$ tsp baking powder \rightarrow 5 pancakes

Making Pancakes: Relationships between Ingredients

- The recipe shows the numerical relationships between the pancake ingredients.
- If we have 2 eggs—and enough of everything else—we can make 5 pancakes.
- We can write this relationship as a ratio.
- 2 eggs: 5 pancakes

What if we have 8 eggs? Assuming that we have
enough of everything else, how many pancakes can
we make? enough of everything else, how many pancakes can we make?

8 eggs $\times \frac{5 \text{ pancakes}}{2 \text{ eggs}} = 20 \text{ pancakes}$

Making Molecules: Mole-to-Mole Conversions

- In a balanced chemical equation, we have a "recipe" for how reactants combine to form products.
- The following equation shows how hydrogen and nitrogen combine to form ammonia (NH₃).

$$
3 H2(g) + N2(g) \rightarrow 2 NH3(g)
$$

$3 H_2(g) + N_2(g) \to 2 NH_3(g)$

The balanced equation shows that $3 H₂$ molecules react with 1 N_2 molecule to form 2 NH_3 molecules. We can express these relationships as ratios. 337

2027 Star 3 H₂ molecules

2027 Star 3 H₂ molecules

3 H₂ molecules : 1 N₂ molecule : 2 NH₃ molecules

3 H₂ molecules : 1 N₂ molecule : 2 NH₃ molecules

4 don't normally deal with individual molecules, We don't normally deal with individual molecules, and we can express the same ratios in moles. press these relationships as ratios.
ecules : 1 N₂ molecule : 2 NH₃ molecules
normally deal with individual molecules,
n express the same ratios in moles.
3 mol H₂ : 1 mol N₂ : 2 mol NH₃ sinps as ratios.

lle : 2 NH₃ molecules

ndividual molecules,

ratios in moles.

: 2 mol NH₃

$3 H_2(g) + N_2(g) \to 2 NH_3(g)$

3 H₂(g) + N₂(g) \rightarrow 2 NH₃(g)
• If we have 3 mol of N₂, and more than
much NH₃ can we make? , and more than enough H_2 , how much NH $_{\rm 3}$ can we make?

2 mol $NH₃$ 1 mol N_2

Stoichiometry in Action: Not Enough Oxygen When Burning Octane

- The balanced equation shows that 2 moles of octane require 25 moles of oxygen to burn completely: Stoichiometry in Action: Not Enough O:
 Burning Octane

The balanced equation shows that 2

require 25 moles of oxygen to burn of

2 C₈H₁₈(*l*) + 25 O₂(*g*) \rightarrow 16 CO₂(*g*) + 18

In the case of octane, a shorta $2 C_8H_{18}(l) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(g)$ Sology diameter older that 2 moles of octane

(g) + 18 H₂O(g)

(g) + 18 H₂O(g)

(age of O₂ causes side
- In the case of octane, a shortage of O_2 causes side reactions that result in pollutants such as carbon monoxide (CO) and ozone.
- The 1990 amendments to the Clean Air Act required oil companies to put additives in gasoline that increased its oxygen content.

Stoichiometry in Action: Controversy over Oxygenated Fuels

- MTBE (methyl tertiary butyl ether, CH₃OC(CH₃)₃) was the additive of choice by the oil companies.
- MTBE is a compound that does not biodegrade readily.
- MTBE made its way into drinking water through gasoline spills at gas stations, from boat motors, and from leaking underground storage tanks.
- Ethanol (C_2H_5OH), made from the fermentation of grains, is now used as a substitute for MTBE to increase oxygen content in motor fuel.
- Ethanol was not used originally because it was more expensive.

Practice: Check your solution on next page

According to the following equation, how many moles of water are made in the combustion of 0.10 moles of glucose $(C_6H_{12}O_6)$?

> $D_2 + 6 H_2O$
Copyright © 2011 Pearson Education, Inc. $C_6H_{12}O_6 + 6O_2 \rightarrow 6 CO_2 + 6 H_2O$

Practice

According to the following equation, how many moles of water are made in the combustion of 0.10 moles of glucose $(C_6H_{12}O_6)$?

$$
C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O
$$

0.1 mol $C_6H_{12}O_6 \times (6$ mol H₂O/1mol $C_6H_{12}O_6$)= 0.6mol H_2O

Making Molecules: Mass-to-Mass Conversions

- A *chemical equation* contains conversion factors between moles of reactants and moles of products.
- We are often interested in relationships between *mass* of reactants and *mass* of products.
- The general outline for this type of calculation is:

2 C₈H₁₈(*l*) + 25 O₂(*g*) \rightarrow 16 CO₂(*g*) + 18 I $2 C_8H_{18}(l) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(g)$ $(g) + 18 H₂O(g)$

- What mass of carbon dioxide is emitted by an 2 $C_8H_{18}(l) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(g)$
What mass of carbon dioxide is emitted by an
automobile per 5.0 × 10² g pure octane used?
The balanced chemical equation gives us a automobile per 5.0×10^2 g pure octane used?
- The balanced chemical equation gives us a relationship between moles of C_8H_{18} and moles of CO_2 .
- Before using that relationship, we must convert from grams to moles.

2 C₈H₁₈(I) + 25 O₂(g) \rightarrow 16 CO₂(g) + 18 H 2 C₈H₁₈(*l*) + 25 O₂(*g*) \rightarrow 16 CO₂(*g*) + 18 H₂O(*g*) $(g) + 18 H₂O(g)$

SOLUTION MAP:

2 C₈H₁₈(I) + 25 O₂(g) \rightarrow 16 CO₂(g) + 18 H $2 C_8H_{18}(I) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(g)$ $(g) + 18 H₂O(g)$

SOLUTION:

$$
5.0 \times 10^2 \text{ g } C_8\text{H}_{18} \times \frac{1 \text{ mol } C_8\text{H}_{18}}{114.3 \text{ g } C_8\text{H}_{18}} \times \frac{16 \text{ mol } CO_2}{2 \text{ mol } C_8\text{H}_{18}} \times \frac{44.01 \text{ g } CO_2}{1 \text{ mol } CO_2} = 1.5 \times 10^3 \text{ g } CO_2
$$

Practice: Check your solution on next page

How many grams of glucose can be synthesized from 37.8 g of $CO₂$ in photosynthesis? $6 CO_2 + 6 H_2O \rightarrow C_6 H_{12}O_6 + 6 O_2$

Practice: How many grams of glucose can be synthesized from 37.8 g of CO₂ in photosynthesis?

Practice: Check your solution on next page How many grams of O_2 can be made from the decomposition of 100.0 g of $PbO₂$? ? $2 \text{ PbO}_2(s) \rightarrow 2 \text{ PbO}(s) + O_2(g)$ **(e:**

your solution on next page

any grams of O₂ can be made fror

position of 100.0 g of PbO₂?

(s) \rightarrow 2 PbO(s) + O₂(g)

= 239.2, O₂ = 32.00) **Practice:**
 Check your solution on next page How many grams of O_2 **can be made decomposition of 100.0 g of PbO₂?

2 PbO₂(s) → 2 PbO(s) + O₂(g)

(PbO₂ = 239.2, O₂ = 32.00)**

Practice — How many grams of O_2 can be made from the decomposition of 100.0 g of $PbO₂$? ? $2 \text{ PbO}_2(s) \rightarrow 2 \text{ PbO}(s) + O_2(g)$ $\begin{array}{l} \textbf{se} \rightarrow \text{How many grams of O}_2 \text{ can be}\\ \text{composition of 100.0 g of PbO}_2?\\ \text{(s) \rightarrow 2 PbO(s) + O}_2(g)$\\ \textbf{Given:} \begin{array}{l} 100.0 \text{ g PbO}_2, 2 \text{ PbO}_2 \rightarrow 2 \text{ Pb} \\ \text{End:} \begin{array}{l} \text{q O} \end{array} \end{array}$

More pancakes …

Recall the original equation:

1 cup flour + 2 eggs + $\frac{1}{2}$ tsp baking powder \longrightarrow 5 pancakes

Limiting Reactant, Theoretical Yield, and Percent Yield

1 cup flour + 2 eggs + $\frac{1}{2}$ tsp baking powder \longrightarrow 5 pancakes

• Suppose we have 3 cups flour, 10 eggs, and 4 tsp baking powder.

• How many pancakes can we Limiting Reactant, Theoretical Yield, and Percent Yield

-
- How many pancakes can we make?

4

3 cupsflow ×
$$
\frac{5 \text{ pancakes}}{1 \text{ cupflow}} = 15 \text{ pancakes}
$$

\n10 eggs × $\frac{5 \text{ pancakes}}{2 \text{ eggs}} = 25 \text{ pancakes}$
\n $\frac{5 \text{ pancakes}}{2 \text{ legs}}$ = 40 pancakes

We have enough flour for 15 pancakes, enough eggs for 25 pancakes, and enough baking powder for 40 pancakes.

If this were a chemical reaction, the flour would be the limiting reactant and 15 pancakes would be the theoretical yield.

- Suppose we cook our pancakes. We accidentally burn 3 of them and 1 falls on the floor.
- So even though we had enough flour for 15 pancakes, we finished with only 11 pancakes.
- If this were a chemical reaction, the 11 pancakes would be our actual yield, the amount of product actually produced by a chemical reaction.

• Our percent yield, the percentage of the theoretical yield that was actually attained, is:

Percent yield =
$$
\frac{11 \text{ pancakes}}{15 \text{ pancakes}} \times 100\% = 73\%
$$

Since 4 of the pancakes were ruined, we got only 73% of our theoretical yield.

Actual Yield and Percent Yield

- The actual yield of a chemical reaction must be determined experimentally and depends on the reaction conditions.
- The actual yield is almost always less than 100%.
- Some of the product does not form.
- Product is lost in the process of recovering it.

Limiting Reactant, Theoretical Yield, Actual Yield, and Percent Yield

To summarize:

- Limiting reactant (or limiting reagent)—the reactant that is completely consumed in a chemical reaction
- Theoretical yield—the amount of product that can be made in a chemical reaction based on the amount of limiting reactant • Limiting reactant (or limiting reagent)—the reactant that

is completely consumed in a chemical reaction

• Theoretical yield—the amount of product that can be

made in a chemical reaction based on the amount of

limitin
- a chemical reaction.
- Percent yield—(actual yield/theoretical yield)×100%

Limiting Reactant and Percent Yield: Mole to Mole

Example: Ti(s) + 2 $\text{Cl}_2(g) \rightarrow \text{TiCl}_4(s)$ imiting Reactant and Percent Yield: Mole to Mole
Example: Ti(s) + 2 Cl₂(g) \rightarrow TiCl₄(s)
Given (*moles*): 1.8 mol Ti and 3.2 mol Cl₂
Find: limiting reactant and theoretical yield
SOLUTION MAP: Find: limiting reactant and theoretical yield SOLUTION MAP:

Limiting Reactant and Percent Yield: Mole to Mole

Example: Ti(s) + 2 Cl₂(g) \rightarrow TiCl₄(s) niting Reactant and Percent Yield: Mole to Mole
Example: Ti(s) + 2 Cl₂(g) \rightarrow TiCl₄(s)
Given (*moles*): 1.8 mol Ti and 3.2 mol Cl₂
Find: limiting reactant and theoretical yield
SOLUTION: Find: limiting reactant and theoretical yield SOLUTION:

Limiting Reactant, Theoretical Yield, Actual Yield, and Percent Yield

- In many industrial applications, the more costly reactant or the reactant that is most difficult to remove from the product mixture is chosen to be the limiting reactant.
- When working in the laboratory, we measure the amounts of reactants in *grams*.
- To find limiting reactants and theoretical yields from initial masses, we must add two steps to our calculations.

Limiting Reactant and Percent Yield: Gram to Gram

Example: 2 Na(s) + $Cl_2(g) \rightarrow 2$ NaCl(s) Given (grams): 53.2 g Na and 65.8 g Cl₂ Find: limiting reactant and theoretical yield SOLUTION MAP:

Limiting Reactant and Percent Yield: Gram to Gram

Example: 2 Na(s) + $Cl_2(g) \rightarrow 2$ NaCl(s) Given (grams): 53.2 g Na and 65.8 g Cl₂ Find: limiting reactant and theoretical yield SOLUTION:

Theoretical Yield and Percent Yield

Example: 2 Na(s) + $Cl_2(g) \rightarrow 2$ NaCl(s) Given (grams): actual yield 86.4 g NaCl Find: percent yield

• The actual yield is usually less than the theoretical yield because at least a small amount of product is lost or does not form during a reaction.

Percent yield =
$$
\frac{\text{Actual yield}}{\text{Theoretical yield}} \times 100\% = \frac{86.4 \text{ g}}{108 \text{ g}} \times 100\% = 80.0\%
$$

Limiting Reactant and Percent Yield: Gram to Gram

Example 8.6: $Cu_2O(s) + C(s) \rightarrow 2 Cu(s) + CO(g)$ Given (grams): 11.5 g C and 114.5 g $Cu₂O$ Find: limiting reactant and theoretical yield SOLUTION MAP:

Relationships Used

- The main conversion factors are the stoichiometric relationships between moles of each reactant and moles of copper.
- The other conversion factors are the molar masses of copper(I) oxide, carbon, and copper.

 1 mol Cu₂O : 2 mol Cu 1 mol C : 2 mol Cu ther conversion factors are the molar r
pper(I) oxide, carbon, and copper.
1 mol C : 2 mol Cu
Molar mass Cu₂O = 143.10 g/mol
Molar mass C = 12.01 g/mol per(I) oxide, carbon, and copper.
1 mol Cu₂O : 2 mol Cu
1 mol C : 2 mol Cu
Molar mass Cu₂O = 143.10 g/mol
Molar mass C = 12.01 g/mol
Molar mass Cu = 63.55 g/mol 1 mol Cu₂O : 2 mol Cu
1 mol C : 2 mol Cu
Molar mass Cu₂O = 143.10 g/mol
Molar mass C = 12.01 g/mol
Molar mass Cu = 63.55 g/mol

Limiting Reactant and Percent Yield: Gram to Gram

Example 8.6: $Cu₂O(s) + C(s)$ \rightarrow 2 Cu(s) + CO(g) Given (grams): 11.5 g C and 114.5 g $Cu₂O$ Find: limiting reactant and theoretical yield SOLUTION:

Actual Yield and Percent Yield

Example 8.6: $Cu₂O(s) + C(s)$ \rightarrow 2 Cu(s) + CO(g) Given (grams): actual yield 87.4 g Cu Find: percent yield SOLUTION:

Theoretical yield $= 101.7$ g Cu $\text{Percent yield} = \frac{\text{Actual yield}}{\text{Theoretical yield}} \times 100\%$ $= \frac{87.4 \text{ g}}{101.7 \text{ g}} \times 100\% = 85.9\%$

A shortcut for finding the limiting reactant

- The amount of product calculated for different reactants is A shortcut for finding the limiting reactant
The amount of product calculated for different reactants is
affected in exactly the same way by the coefficient of the
product in the reaction equation product in the reaction equation **nortcut for finding the limiting reactant
amount of product calculated for different reactants is
teed in exactly the same way by the coefficient of the
duct in the reaction equation
at makes a difference is the <u>coeffic**</u>
- What makes a difference is the coefficient of each reactant

 $Ti(s) + 2 Cl₂(g) \rightarrow TiCl₄(s)$

Reactant coefficient divides the reactant amount

A shortcut for finding the limiting reactant

Limiting reactant is the one for which the following ratio is the smallest:

(moles of reactant available)

(coefficient in the reaction equation)

Practice: Check your solution on next page

How many moles of Si_3N_4 can be made from 1.20 moles of Si and 1.00 moles of N_2 in the reaction 3 Si + 2 $N_2 \rightarrow$ Si₃N₄? ?

Practice — How many moles of $Si₃N₄$ can be made from 1.20 moles of Si and 1.00 moles of N_2 in the reaction $3 Si + 2 N_2 \rightarrow Si_3N_4$? ?

Practice:

Check your solution on next page

Practice:
 Check your solution on next page

• When 28.6 kg of C are allowed to react with 88.2 kg

of TiO₂ in the reaction below, 42.8 kg of Ti are

obtained. Find the limiting reactant theoretical of $TiO₂$ in the reaction below, 42.8 kg of Ti are our solution on next page
18.6 kg of C are allowed to react with 88.2 kg
in the reaction below, 42.8 kg of Ti are
d. Find the limiting reactant, theoretical
nd percent vield obtained. Find the limiting reactant, theoretical yield, and percent yield.

$\text{TiO}_2(\text{s}) + 2 \text{ C}(\text{s}) \rightarrow \text{Ti}(\text{s}) + 2 \text{ CO}(\text{g})$

```
Practice:
When 28.6 kg of C reacts with 
88.2 kg of TiO<sub>2</sub>, 42.8 kg of Ti are
                               of C reacts with<br>, 42.8 kg of Ti are<br>I the limiting<br>etical yield, and
obtained. Find the limiting 
reactant, theoretical yield, and 
percent yield 
\overline{\text{TiO}}_2(\text{s}) + 2 \text{ C}(\text{s}) \rightarrow \overline{\text{Ti}}(\text{s}) + 2 \text{ CO}(g)Practice:<br>
When 28.6 kg of C reacts with<br>
88.2 kg of TiO<sub>2</sub>, 42.8 kg of Ti are<br>
bbtained. Find the limiting<br>
eactant, theoretical yield, and<br>
ercent yield<br>
FIO<sub>2</sub>(s) + 2 C(s) → Ti(s) + 2 CO(g)<br>
<br>
• Write down the given qu
```
en 28.6 kg of C reacts with

kg of TiO₂, 42.8 kg of Ti are

lined. Find the limiting

tant, theoretical yield, and

lent yield

(s) + 2 C(s) → Ti(s) + 2 CO(g)

Write down the given quantity and its

Given: 28.6 kg C
 88.2 kg TiO₂ 42.8 kg Ti produced

Find: limiting reactant theoretical yield percent yield

shortcut

Practice: Find the limiting reactant, theoretical yield, and percent yield $\text{TiO}_2(s) + 2 \text{ C}(s) \rightarrow$ $Ti(s) + 2 CO(g)$ Practice:

Find the limiting

Find: lim. rct., theoryda, 9

ield, and percent

ield

ind: lim. rct., theoryda, 9
 Plan: kg rct \rightarrow g rct \rightarrow mol

riield

pick smallest mol Ti \rightarrow Th.

Ti(s) + 2 CO(g)

• Collect neede

Information

Given: 28.6 kg C, 88.2 kg TiO₂, 42.8 kg Ti \qquad **Information**
 Given: 28.6 kg C, 88.2 kg TiO₂, 42.8 kg Ti

Find: lim. rct., theor. yld., % yld.

Plan: kg rct \rightarrow g rct \rightarrow mol rct \rightarrow mol Ti

pick smallest mol Ti \rightarrow Th.Y kg Ti \rightarrow %Y Ti

(or start with the li Information

Given: 28.6 kg C, 88.2 kg TiO₂, 42.8 kg Ti

Find: lim. rct., theor. yld., % yld.

Plan: kg rct → g rct → mol rct → mol Ti

pick smallest mol Ti → Th.Y kg Ti → %Y Ti

(or start with the lim.rct. given by sho

Find: lim. rct., theor. yld., % yld.

Plan: kg rct \rightarrow g rct \rightarrow mol rct \rightarrow mol Ti

 $1000 g = 1 kg$ Molar Mass TiO₂ = 79.87 g/mol Man: kg rct \rightarrow g rct \rightarrow mold
 $y(s) + 2 C(s) \rightarrow$
 $y + 2 CO(g)$

Collect needed relationships

1000 g = 1 kg

Molar Mass TiO₂ = 79.87 g/mol

Molar Mass Ti = 47.87 g/mol

Molar Mass C = 12.01 g/mol

Molar Mass C = 12.01 g/mol or start with the lim.rct. given by shortcut)

d relationships
 $\frac{1}{2} = 79.87$ g/mol
 $\frac{12.01$ g/mol

: 1 mol Ti (from the chem. equation)

mol Ti (from the chem. equation) Lect needed relationships
 $200(g)$ = 1 kg
 $200(g)$ = 1 mol Ti (from the chem. equation)
 2 mole Ci = 1 mol Ti (from the chem. equation)
 $2 \text$

Molar Mass $C = 12.01$ g/mol

1 mole $TiO₂$: 1 mol Ti (from the chem. equation)

• Apply the conceptual plan
 $\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\% = \text{Percent Yield}$ AOQ _{M}T_i

$$
\frac{42.0 \text{ Ng}}{52.9 \text{ kg}} = 1.1 \times 100\% = 80.9\%
$$

limiting reactant = $TiO₂$ theoretical yield = 52.9 kg percent yield = 80.9%

Because Ti has lower molar mass than $TiO₂$, the T.Y. makes sense and the percent yield makes sense as it is less than 100%

ne percent yield?
Copyright © 2011 Pearson Education, Inc. Practice: Check your solution on next page How many grams of $N_2(g)$ can be made from 9.05 g of NH₃ reacting with 45.2 g of CuO? $2 NH_3(g) + 3 CuO(s) \rightarrow N_2(g) + 3 Cu(s) + 3 H_2O(l)$ ice:

k your solution on next page

nany grams of N₂(g) can be made from 9.05

₃ reacting with 45.2 g of CuO?

(g) + 3 CuO(s) \rightarrow N₂(g) + 3 Cu(s) + 3 H₂O(l)

g of N₂ are made, what is the percent yield? If 4.61 g of N_2 are made, what is the percent yield?

Practice How many grams of $N_2(g)$ can be made from 9.05 g of NH₃ reacting with 45.2 g of CuO? 2 NH₃(g) + 3 CuO(s) \rightarrow N₂(g) + 3 Cu(s) + 3 H₂O(l) (g) + 3 CuO(s) → N₂(g) + 3 Cu(s) + 3 H₂O(l)

nat is the percent yield? If 4.61 g of N_2 are made, what is the percent yield?

Practice — How many grams of $N_2(g)$ can be made from 9.05 g of NH₃ reacting with 45.2 g of CuO? 2 NH₃(g) + 3 CuO(s) \rightarrow N₂(g) + 3 Cu(s) + 3 H₂O(l) (g) can be made from 9.05 g of NH₃
(g) + 3 CuO(s) → N₂(g) + 3 Cu(s) + 3 H₂O(l)
percent yield? If 4.61 g of N_2 are made, what is the percent yield?

Enthalpy Change: A Measure of the Heat Evolved or Absorbed in a Reaction

- Chemical reactions can be exothermic (they emit thermal energy when they occur).
- Chemical reactions can be endothermic (they absorb thermal energy when they occur).
- The *amount* of thermal energy emitted or absorbed by a chemical reaction, under conditions of constant pressure (which are common for most everyday reactions), can be quantified with a function called enthalpy.

Enthalpy Change: A Measure of the Heat Evolved or Absorbed in a Reaction

We define the **enthalpy of reaction**, $\Delta H_{\rm rxn}$, as the amount of thermal energy (or heat) that flows when a reaction occurs at constant pressure. **hthalpy Change: A Measure of the Heat Evolved or**
bsorbed in a Reaction
We define the **enthalpy of reaction**, ΔH_{rxn} , as the
amount of thermal energy (or heat) that flows
when a reaction occurs at constant pressure.

- enthalpy due to reaction"; that's why we have Δ
- Enthalpy is a form of energy content
- Its loss is revealed as released heat
- Its gain is revealed as absorbed heat

- The sign of $\Delta H_{\rm rxn}$ (positive or negative) depends on the direction in which thermal energy flows when the reaction occurs.
- Energy flowing *out* of the chemical system is like a withdrawal and carries a negative sign.
- Energy flowing *into* the system is like a deposit and carries a positive sign.

Exothermic and Endothermic Reactions

- In an exothermic reaction, energy is released into the surroundings.
- In an endothermic reaction, energy is absorbed from the surroundings.

Sign of $\Delta H_{\rm rxn}$

When thermal energy flows out of the reaction and into the surroundings (as in an exothermic reaction), then $\Delta H_{\rm rxn}$ is negative. (we sout of the reaction and into

m exothermic reaction), then

for the combustion of CH₄, the

ral gas, is as follows:

(g) + 2H₂O(g) $\Delta H_{rxn} = -802.3$ kJ

iic and therefore has a negative

The enthalpy of reaction for the combustion of CH₄, the main component in natural gas, is as follows:

 $CH_4(g) + 2O_2(g) \to CO_2(g) + 2H_2O(g)$ ΔH_{rx}

This reaction is exothermic and therefore has a negative enthalpy of reaction.

The magnitude of $\Delta H_{\rm rxn}$ tells us that 802.3 kJ of heat are CH₄(g) + 2O₂(g) \rightarrow CO₂(g) + 2H₂O(g) ΔH_{rxn} =
This reaction is exothermic and therefore has a lenthalpy of reaction.
The magnitude of ΔH_{rxn} tells us that 802.3 kJ of lemitted when 1 mol CH₄ reacts with 2 (g) + 2H₂O(g) ΔH_{rxn} = -802.3 kJ
ic and therefore has a negative
ells us that 802.3 kJ of heat are
reacts with 2 mol O₂. emitted when 1 mol CH₄ reacts with 2 mol O₂.

Sign of ΔH_{rxn}

When thermal energy flows into the reaction and out of the surroundings (as in an endothermic reaction), then $\Delta H_{\rm rxn}$ is positive. energy flows into the reaction and out
ings (as in an endothermic reaction),
sitive.
e reaction between nitrogen and
orm nitrogen monoxide
(g) \rightarrow 2 NO(g) $\Delta H_{\rm rxn}$ = +182.6 kJ
and therefore has a positive enthalpy

For example, the reaction between nitrogen and oxygen gas to form nitrogen monoxide

 $\mathsf{N}_2(g) + \mathsf{O}_2(g) \to 2 \mathsf{NO}(g)$

is endothermic and therefore has a positive enthalpy of reaction.

The magnitude of $\Delta H_{\rm rxn}$ tells us that 182.6 kJ of heat is absorbed from the surroundings when 1 mol N_2 reacts with $1 \text{ mol } O_2$.

Stoichiometry of $\Delta H_{\rm rxn}$

- The amount of heat emitted or absorbed when a chemical reaction occurs depends on the amounts of reactants that actually react.
- We usually specify ΔH_{rxn} in combination with the balanced chemical equation for the reaction.
- The magnitude of $\Delta H_{\rm rxn}$ is for the stoichiometric amounts of reactants and products for the reaction as written.
- So, when we specify $\Delta H_{\rm rxn}$, the coefficients (normally We usually specity $\Delta H_{\rm rxn}$ in combination with the
balanced chemical equation for the reaction.
The magnitude of $\Delta H_{\rm rxn}$ is for the stoichiometric
amounts of reactants and products for the reaction
<u>as written</u>.
S balanced chemical equation for the reaction.
The magnitude of $\Delta H_{\rm rxn}$ is for the stoichiometric
amounts of reactants and products for the reaction
as written.
So, when we specify $\Delta H_{\rm rxn}$, the coefficients (normal The magnitude of ΔH_{rxn} is for the stoichiometric
amounts of reactants and products for the reactior
<u>as written</u>.
So, when we specify ΔH_{rxn} , the coefficients (norma
indicating <u>ratios</u> only) in the reaction are <u>a</u>

Stoichiometry of ΔH_{rxn}

For example, the balanced equation and $\Delta H_{\rm rxn}$ for the combustion of propane (the fuel used in LP gas) is as follows: ed equation and Δ H_{rxn} for the
the fuel used in LP gas) is as
(g) + 4H₂O(g) ΔH_{rxn} = −2044 kJ
icts with 5 moles of O₂ to form

$$
C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g) \Delta H_{rxn} = -2044 \text{ kJ}
$$

When 1 mole of C_3H_8 reacts with 5 moles of O_2 to form 3 moles of CO_2 and 4 moles of H_2O , 2044 kJ of heat is emitted.

These ratios can be used to construct conversion factors between amounts of reactants or products and the quantity of heat exchanged.

Stoichiometry of $\Delta H_{\rm rxn}$

• To find out how much heat is emitted upon the combustion of a certain mass in grams of propane $\mathsf{C}_3\mathsf{H}_8$, we can use the following solution map:

Example 8.7: Stoichiometry Involving ΔH_{rxn}
Δn I P σas tank in a home harhecue contains 11 & x

- An LP gas tank in a home barbecue contains 11.8 \times 10^3 g of propane (C_3H_8) .
- Calculate the heat (in kJ) associated with the Example 8.7: Stoichiometry Involving ΔH_{rxn}
An LP gas tank in a home barbecue contains 11.8 \times
10³ g of propane (C₃H₈).
Calculate the heat (in kJ) associated with the
complete combustion of all of the propane i tank.

$$
C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)
$$

\n $\Delta H_{rxn} = -2044 \text{ kJ}$

Stoichiometry Involving ΔH_{rxn}

Example: Complete combustion of 11.8×10^3 g of propane (C_3H_8)) SOLUTION MAP:

RELATIONSHIPS USED:

Molar mass $C_3H_8 = 44.11$ g/mol

Stoichiometry Involving ΔH_{rxn}

Example: Complete combustion of 11.8×10^3 g of propane $(\mathsf{C}_3\mathsf{H}_8)$ SOLUTION:

$$
11.8 \times 10^3 \text{ gC}_3\text{H}_8 \times \frac{1 \text{ mol-G}_3\text{H}_8}{44.11 \text{ gC}_3\text{H}_8} \times \frac{-2044 \text{ kJ}}{1 \text{ mol-G}_3\text{H}_8} = -5.47 \times 10^5 \text{ kJ}
$$

Often in the questions, the absolute value of heat (q) , $|q|$, is requested and words are used to convey the sign of the heat absorbed or given off in the reaction. used to convey the sign of the heat absorbed
or given off in the reaction.
 $q =$ "heat" = heat absorbed
heat absorbed = q
heat absorbed = q
heat absorbed = q

 $q =$ "heat" = heat absorbed

 $q = "heat" = heat absorbed$
heat absorbed = q
heat released = -q $q = \Delta H$
heat released = -q $-q = -\Delta H$

Practice: Check your solution on next page

How much heat is evolved (released) when a 0.483 g diamond (a form of carbon) is burned? **Practice:**

Check your solution on next page

How much heat is evolved (released) when a 0.483 g

diamond (a form of carbon) is burned?
 $(\Delta H_{\text{combination}} = -395.4 \text{ kJ/mol C})$

Practice – How much heat is evolved when a 0.483 g diamond is burned?

One more thing:

• If we consider the reverse of a reaction, the $\Delta H_{\rm rxn}$ sign is reversed (positive becomes negative, negative becomes positive) Se of a reaction, the ΔH_{rxn} sign is
mes negative, negative becomes
(g) + 4 H₂O(g) ΔH_{rxn} = -2044 kJ ction, the Δ H_{rxn} sign is
ve, negative becomes
(g) ΔH_{rxn} = -2044 kJ
(g) ΔH_{rxn} = +2044 kJ
energy to combine

$$
C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)
$$
 $\Delta H_{rxn} = -2044 \text{ kJ}$

 $3 CO₂(g) + 4 H₂O(g) \rightarrow C₃H₈(g) + 5 O₂(g) \Delta H_{rxn} = +$

positive)
 $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$ $\Delta H_{rxn} = -2044 \text{ kJ}$
 $3 CO_2(g) + 4 H_2O(g) \rightarrow C_3H_8(g) + 5 O_2(g)$ $\Delta H_{rxn} = +2044 \text{ kJ}$

We would have to supply 2044 kJ of energy to combine

3 moles of CO₂(g) and 4 moles of H 3 moles of $CO₂(g)$ and 4 moles of H₂O to obtain 1 mole of $\mathsf{C}_3\mathsf{H}_8(g)$ and 5 moles of $\mathsf{O}_2(g)$

Everyday Chemistry Bunsen Burners

- Most Bunsen burners have a mechanism to adjust the amount of air (and therefore of oxygen) that is mixed with the methane. • Most Bunsen burners have a mechanism to adjust the

• Most Bunsen burners have a mechanism to adjust the

• Most Bunsen burners have a mechanism to adjust the

• If you light the burner with the air completely closed

• • Most Bunsen burners have a mechanism to adjust the

• Most Bunsen burners have a mechanism to adjust the

emount of air (and therefore of oxygen) that is mixed

• If you light the burner with the air completely closed

• • Most Bunsen burners have a mechanism to adjust the amount of air (and therefore of oxygen) that is mixed with the methane.
• If you light the burner with the air completely closed off, you get a yellow, smoky flame that
- If you light the burner with the air completely closed
off, you get a yellow, smoky flame that is not very hot.
- burner, the flame becomes bluer, less smoky, and hotter.
- has a sharp, inner blue triangle, gives off no smoke, and is hot enough to melt glass easily. • If you light the burner with the air completely closed

• If you light the burner with the air completely closed

• As you increase the amount of air going into the

burner, the flame becomes bluer, less smoky, and

hott off, you get a yellow, smoky flame that is not ver
As you increase the amount of air going into the
burner, the flame becomes bluer, less smoky, ar
hotter.
When you reach the optimum adjustment, the fl
has a sharp, inner b
- causes the flame to become cooler again and may actually extinguish it.

A Bunsen Burner at Various Stages of Air Intake Adjustment

(a) No air

(b) Small amount of air

(c) Optimum

(d) Too much air

Chapter 8 in Review

• Stoichiometry: A balanced chemical equation gives quantitative relationships between the amounts of reactants and products. The quantitative relationship between reactants and products in a chemical reaction is called reaction stoichiometry.

Chapter 8 in Review

- Limiting Reactant, Theoretical Yield, and Percent Yield:
- Limiting Reactant, Theoretical Yield, and Percent
• Limiting Reactant, Theoretical Yield, and Percent
• The limiting reactant in a chemical reaction is the reactant
• The theoretical vield in a chemical reaction is the a that limits the amount of product that can be made.
- Limiting Reactant, Theoretical Yield, and Percent
• The limiting reactant in a chemical reaction is the reactant
that limits the amount of product that can be made.
• The theoretical yield in a chemical reaction is the a of product that can be made based on the amount of the limiting reactant. • Limiting Reactant, Theoretical Yield, and Percent

Yield:

• The limiting reactant in a chemical reaction is the reactant

that limits the amount of product that can be made.

• The theoretical yield in a chemical reacti • The limiting reactant in a chemical reaction is the reactant
that limits the amount of product that can be made.
• The theoretical yield in a chemical reaction is the amount
of product that can be made based on the amoun
- product actually produced.
- divided by theoretical yield times 100%.

Chapter 8 in Review

- Enthalpy of Reaction: The amount of heat released or absorbed by a chemical reaction under conditions of constant pressure is the enthalpy of reaction $(\Delta H_{\rm rxn})$. • Enthalpy of Reaction: The amount of heat
released or absorbed by a chemical
reaction under conditions of constant
pressure is the enthalpy of reaction (Δ H_{rxn}).
• The magnitude of ΔH_{rxn} is associated with
the sto
- the stoichiometric amounts of reactants and products for the reaction as written.

Chemical Skills Learning Objectives

- Chemical Skills Learning Objectives
1. LO: Recognize the numerical relationship between chemical
quantities in a balanced chemical equation.
2. LO: Carry out mole-to-mole conversions between reactants quantities in a balanced chemical equation.
- **Chemical Skills Learning Objectives**

1. LO: Recognize the numerical relationship between chemical

quantities in a balanced chemical equation.

2. LO: Carry out mole-to-mole conversions between reactants

and products ba and products based on the numerical relationship between chemical quantities in a balanced chemical equation.
- **Chemical Skills Learning Objectives**

1. LO: Recognize the numerical relationship between chemical

quantities in a balanced chemical equation.

2. LO: Carry out mole-to-mole conversions between reactants

and products ba and products based on the numerical relationship between chemical quantities in a balanced chemical equation and molar masses. 1. LO: Recognize the numerical relationship between chemical
quantities in a balanced chemical equation.
2. LO: Carry out mole-to-mole conversions between reactants
and products based on the numerical relationship between
 quantities in a balanced chemical equation.

LO: Carry out mole-to-mole conversions between reactants

and products based on the numerical relationship between

chemical quantities in a balanced chemical equation.

LO: Car and products based on the numerical relationship between

chemical quantities in a balanced chemical equation.

3. LO: Carry out mass-to-mass conversions between reactants

and products based on the numerical relationship
- equation.
- absorbed by a chemical reaction.

Highlight Problem EOC 8.101

- Scientists have grown progressively more worried about the potential for global warming caused by increasing atmospheric carbon dioxide levels. **Example 120 S.101**
Scientists have grown progressively more worried
about the potential for global warming caused by
increasing atmospheric carbon dioxide levels.
The world burns the fossil fuel equivalent of
approximate • Scientists have grown progressively more worried
about the potential for global warming caused by
increasing atmospheric carbon dioxide levels.
• The world burns the fossil fuel equivalent of
approximately 9.0×10^{12}
- The world burns the fossil fuel equivalent of
- octane (C_8H_{18}) and calculate how much CO₂ in kilograms is produced by world fossil fuel The world burns the fossil fuel equivalent of
approximately 9.0×10^{12} kg of petroleum per year.
Assume that all of this petroleum is in the form of
octane (C₈H₁₈) and calculate how much CO₂ in
kilograms is prod consumption to solve the question on the next page.

Highlight Problem EOC 8.101

nlight Problem EOC 8.101
2 C₈H₁₈(I) + 25 O₂(g) \rightarrow 16 CO₂(g) + 18 $2 C_8H_{18}(l) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(g)$ $(g) + 18 H₂O(g)$

- Highlight Problem EOC 8.101
 $2 C_8H_{18}(l) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(g)$

 The balanced chemical equation shows that 16 mol of
 CO_2 are produced for every 2 mol of octane burned. $CO₂$ are produced for every 2 mol of octane burned. 2 $C_8H_{18}(l)$ + 25 $O_2(g) \rightarrow 16$ $CO_2(g)$ + 18 $H_2O(g)$
balanced chemical equation shows that 16 mol of
are produced for every 2 mol of octane burned.
e atmosphere currently contains approximately
- If the atmosphere currently contains approximately 2 $C_8H_{18}(l)$ + 25 $O_2(g) \rightarrow 16 CO_2(g)$ + 18 $H_2O(g)$
The balanced chemical equation shows that 16 mol of
CO₂ are produced for every 2 mol of octane burned.
If the atmosphere currently contains approximately
3.0 × 10¹⁵ world's fossil fuel combustion to double the amount of atmospheric carbon dioxide?